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ABSTRACT
Instantaneous frequency (IF) estimation of signals with non-
linear phase is challenging, especially for online processing.
In this paper, we propose IF estimation using sequential Baye-
sian techniques, by combining the particle filtering method
with the Markov chain Monte Carlo (MCMC) method. Us-
ing this approach, a nonlinear IF of unknown closed form
is approximated as a linear combination of the IFs of non-
overlapping waveforms with polynomial phase. Simultane-
ously applying parameter estimation and model selection, the
new technique is extended to the IF estimation of multicom-
ponent signals. Using simulations, the performance of this
sequential MCMC approach is demonstrated and compared
with an existing IF estimation technique using the Wigner dis-
tribution.

Index Terms— Frequency estimation, Bayes theorem, par-
ticle filter, Markov chain Monte Carlo

1. INTRODUCTION

Many naturally occurring signals have time-varying (TV) spec-
tral characteristics. Whereas sinusoids have a single frequency
over all time, linear frequency-modulated (FM) chirps (used
in radar and sonar) have frequencies that vary linearly with
time, and shallow-water acoustic waves undergo dispersive
(nonlinear) frequency modulations.

For a single component signal,

s(t) = A(t)ej2πcϕ(t), (1)

with amplitude A(t), phase ϕ(t) and FM rate c, the frequency
at a particular time can be described by the IF:

ζs(t) = c
d

dt
ϕ(t). (2)

In many real-life applications such as radar, sonar, under-
water acoustics and structural health monitoring, the IF can
be a powerful tool in estimating important parameters of the
signal. For example, it was shown in [1] that varying ζs(t)
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from a linear to a hyperbolic function resulted in better track-
ing estimation. Furthermore, the ability to estimate the IF of
a signal propagating through an unknown environment may
provide information useful in characterizing the environment.
As a result, it is important to be able to accurately estimate
the IF to obtain the signal’s spectral variation with time.

In this paper, we begin with a brief overview of the cur-
rent IF estimation methods and their shortcomings in Section
2. In Section 3, we propose a new IF estimation method based
on the use of sequential Bayesian techniques. Specifically, we
combine a particle filter with MCMC to estimate static param-
eters of the IF of windowed signal segments. We extend this
to signals with multiple components using model selection.
Some simulation results that demonstrate the effectiveness of
the new approach are presented in Section 4.

2. IF ESTIMATION METHODS

Parametric and non-parametric approaches to IF estimation
are commonplace in the literature. Non-parametric IF esti-
mation techniques do not assume a mathematical model for a
signal and instead use time-frequency (TF) signal representa-
tions to describe the IF in the TF plane. Conversely, paramet-
ric IF estimation methods assume a specific signal model, as
in (1), and then proceed to estimate the IF.

TF analysis is a well-known processing tool that has been
applied to the IF estimation of signals as a non-parametric
approach as it provides a natural means to display the sig-
nal spectrum at every time instant. The Wigner distribution
(WD), Ws(t, f) =

∫
s(t + τ/2)s∗(t − τ/2)e−j2πfτdτ , of a

signal s(t) is a very popular time-frequency representation
(TFR) that can provide high resolution along the signal’s IF.
In particular, it can be shown that the IF in (2) of the signal in
(1) is:

ζs(t) =

∫
f Ws(t, f)df. (3)

For multicomponent signals,
∑

l Al(t)e
j2πcϕl(t), with nonlin-

ear phase ϕl(t), the IF in (2) no longer provides the signal’s
matched TV spectrum since (2) is not a linear representation.
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This follows also from (3) since the WD is a quadratic TFR
that suffers from cross terms for multicomponent signals.

The IF can also be estimated by extracting ridges (or peaks)
of a TFR and then applying a peak detection algorithm to es-
timate the IF:

ζ̂s(t) = arg{max
f∈F

{Ts(t, f ;h)}},

where Ts(t, f ;h) is a quadratic TFR that depends on a smooth-
ing window h(t) and F contains frequency values for which
the TFR is non-zero. An algorithm that used a smoothed WD
with an adaptive window width determination to improve the
estimation performance was used in [2]. Although this can
improve the performance of the WD for multicomponent sig-
nals, the smoothing may smear the estimated IF values. IF
estimation of seismic data was used in conjunction with the
reassignment method in [3]. A drawback of the original reass-
ingment method was a loss of performance in low signal-to-
noise ratio (SNR) environments. To mitigate noise-sensitivity,
a multi-taper TF reassignment method was proposed in [4].

IF estimation methods have also been developed based on
parametric and often statistical models to describe the sig-
nal. For example, Newton’s method was used in [5] to de-
termine the maximum of the log-likelihood function, but this
only worked for the joint estimation of frequency and FM rate
of a signal in white Gaussian noise. In [6], a Bayesian ap-
proach for IF estimation was proposed by using the MCMC
method with parametric processes when prior knowledge on
the statistical properties of the processes was available.

3. SEQUENTIAL MCMC IF ESTIMATION

The previously mentioned methods do not perform well when
(i) the IF is nonlinear, (ii) a closed form expression for the sig-
nal is unavailable, or (iii) the signal is multicomponent. More-
over, the estimates may need to be computed offline; in a wide
variety of applications, estimates are required to be updated
online and executed sequentially. Finally, the implementa-
tion method may require storage of intermediate data leading
to excessive storage costs and increased computational com-
plexity as additional measurements are computed.

In this work, we propose a sequential Bayesian IF estima-
tor that combines a particle filter with MCMC methods for a
non-parametric signal model. Without assuming the existence
of a closed form expression for the phase ϕ(t), we window
the signal into non-overlapping segments with each segment
modeled with polynomial phase with unknown coefficients.
Thus, we approximate the IF ζs(t) as a linear combination of
the derivatives of the polynomial functions. The static coeffi-
cients are estimated sequentially for each window: a particle
filter allows for online processing and the MCMC increases
estimation accuracy and reduces storage cost and computa-
tional complexity. Since the IF in each window can be ap-
proximated by a polynomial, the problem is reduced to deter-
mining the polynomial coefficients. As expected, the larger

the degree, the better the estimation accuracy. However, there
is a trade-off between accuracy and computational complex-
ity.

3.1. Estimation of Static Parameters

As particle filtering was designed for dynamic parameter es-
timation, it was shown to fail when used to estimate static
parameters [7]. Following the method discussed in [8], we
estimate the parameter vector in each window by combining
sequential importance sampling particle filtering with MCMC
methods. Next, we provide the main steps of this sequential
MCMC (SMCMC) approach.

Suppose at time step k, the particles and their correspond-
ing weights, (x1, w1

k), (x2, w2
k), · · · , (xNs , wNs

k ), are used to
represent the conditional probability density function p(x|Zk),
where Ns is the number of particles, x is the static parameter
vector to be estimated, zk is the observation vector at time
step k and Zk = [z1, z2, · · · , zk]. The SMCMC method up-
dates the weight for each particle using:

wi
k+m ∝ p(zk+1, zk+2, · · · , zk+m|xi, zk)wi

k, i = 1, · · · , Ns

where m is the batch size. Next, a rejuvenation test is per-
formed using the Kullback-Leibler distance measure [8]. Spe-
cifically, if severe degeneracy occurs [8], indicated by the test,
the MCMC method is applied using the independent Metropo-
lis-Hastings (IMH) algorithm [8] with the Gaussian distribu-
tion N (x|µx,Σx) as the proposal density, where

µx =

Ns∑
i=1

wi
k+mx

i, Σx =

Ns∑
i=1

wi
k+m(xi − µx)(xi − µx)T .

New particles and weights are then obtained by sampling from
this Gaussian distribution, representing p(x|Zk+m).

When x can originate from different types of signal struc-
tures {H1, H2, · · · , HM}, model selection is used simultane-
ously [8]. Let the parameter vector for model j be x

(j), then,
the resulting distribution can be obtained using:

p(x|Zk) =
M∑

j=1

P (Hj |Zk)p(x(j)|Zk, Hj), (4)

where P (Hj |Zk) is the probability of model Hj given mea-
surements Zk, and p(x(j)|Zk, Hj) is the one discussed above
given model Hj . Instead of using multiple hypothesis testing
in [9], the model probabilities are updated sequentially.

3.2. IF Estimation of Single Component Signals

The IF of a single component signal (that can be decomposed
into basis functions which are non-overlapping in time) is
given by the linear combination of the IFs of these basis func-
tions. Specifically, assume that s(t) can be decomposed as:

s(t) =
L∑

l=1

Al(t)e
j2πϕl(t)pl(t),



where pl(t) = u(t − (l − 1)T ) − u(t − lT ) is a rectangular
window and u(t) is the unit step. Then we can show that the
IF of s(t) is given by ζs(t) =

∑L
l=1

d
dt

ϕl(t)pl(t). There-
fore, given a waveform with an unknown nonlinear phase
ϕ(t), we propose to approximate its IF ζs(t) using a linear
combination of IFs of FM waveforms with polynomial phase
ϕl(t) =

∑N
n=0 an,lt

n and duration T . Specifically,

ζs(t) ≈
L∑

l=1

N∑
n=1

nan,lt
n−1pl(t). (5)

With this assumption, the estimation of the IF becomes the
estimation of a set of unknown static parameter vectors xl =
[a1,l, a2,l, · · · , aN,l], l = 1, . . . , L using the SMCMC method
described in Section 3.1. In each window l, a new set of parti-
cles is used to estimate the parameter vector xl. To reduce
approximation errors, we consider short duration windows
pl(t); the window length, however, has to be long enough to
reduce errors in estimating the polynomial coefficients.

3.3. IF Estimation of Multiple Component Signals

For a multicomponent signal, the IF cannot be simply inter-
preted as the average frequency at each time [10]. Instead, we
need to obtain a representation that provides the sum of the
IFs of the different signal components in order to provide the
frequency content of the signal. If we assume that the num-
ber, Q, of components of a multicomponent signal is known,
and that the signal can be decomposed as:

s(t) =

Q∑
q=1

L∑
l=1

A
(q)
l (t)ej2πϕ

(q)
l

(t)pl(t),

where A
(q)
l (t) and ϕ

(q)
l (t) are the amplitude and phase of the

qth component in the lth window, respectively, then the IF of
this component is approximately:

ζ
(q)
l (t) ≈

N∑
n=1

na
(q)
n,lt

n−1, (6)

where a
(q)
n,l is the nth coefficient of component q in the lth

window. Therefore, in the lth window, Q parameter vectors,
x

(q)
l = [a

(q)
1,l , · · · , a

(q)
N,l], q = 1, · · · , Q, are estimated using

SMCMC with a new set of particles for each vector.
Our approach can be extended to the IF estimation of mul-

tiple component signals when the number of components is
unknown. In this case, we assume that there are several mod-
els corresponding to the number of components present in
the lth window. For each model, Ql FM waveforms (Ql ∈
[1, 2, · · · , Q]) are used to approximate the IFs of the Ql com-
ponents in the lth window with Ql sets of polynomial coef-
ficients x

(q)
l = [a

(q)
1,l , · · · , a

(q)
N,l], q = 1, · · · , Ql as the pa-

rameter vectors to be estimated. The number of components

Ql, which may vary in different windows, is determined us-
ing model selection. Specifically, if the maximum number of
components is known to be Q, there are totally Q + 1 models
to choose from:

H0 : zl(t) = vl(t)
H1 : zl(t) = Al(t)e

j2πϕl(t) + vl(t)
...

HQ : zl(t) =
∑Q

q=1 A
(q)
l (t)ej2πϕ

(q)
l

(t) + vl(t).

The Ql signal component parameter vectors in the lth window
are estimated simultaneously.

4. SIMULATIONS

With the order N = 2 in (5), linear approximation works best
when there are no sudden changes in the IF and if the window
length is small. We demonstrate the estimation performance
by comparing the true and estimated IF of a 9 dB SNR noisy
single component signal in Fig. 1 (a) with window length 500
samples. The time averaged root mean square error (RMSE)
for varying SNR is shown in Fig. 1 (b).

0 2 4 6 8 10
x 104

60

80

100

120

140

160

180

200

220

time step

f (
Hz

)

estimated IF
true IF

(a)

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

SNR in dB
Ti

m
e−

av
er

ag
ed

 R
M

SE
 (H

z)

(b)

Fig. 1. IF estimation using linear approximation: (a) esti-
mated compared with true IF, (b) RMSE vs SNR.

Quadratic approximation (polynomial with order N = 3)
is performed in Fig. 2 (a), and compared with linear approx-
imation. We used a 9 dB SNR signal and 1000 samples win-
dow length. It can be seen that for this case, where there is a
sudden change in the IF, the quadratic approximation is much
better than the linear one, resulting in a smaller estimation
error. The averaged RMSE is 4.13 Hz for the linear approxi-
mation and 0.80 Hz for the quadratic. Note that the window
length was chosen large in this example for comparison. The
larger the window length, the worse the linear approximation.

Next, we demonstrate the use of SMCMC with model se-
lection for multicomponent signal IF estimation. Fig. 3 shows
the estimation of two component signals overlapping in time
as they approach each other in frequency. The SNR is 9 dB
and the window length is 500. The performance demonstrates
the advantage of our method even when the two components
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Fig. 2. (a) Comparison of IF estimation of a single com-
ponent signal using quadratic and linear approximation. (b)
IF estimation of two crossing linear FM chirps using linear
approximation SMCMC (stars and crosses), compared with
short-time WD (dots).

are very close. Note that the IF estimation in Fig. 3 (b) is very
difficult for most IF estimation methods.
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Fig. 3. SMCMC IF estimation; signal components are (a) not
overlapping and (b) overlapping in frequency.

We compare the performance of our approach with the
WD IF estimation technique. For comparison, the method
in [11] is extended to short-time processing by executing the
WD IF estimation on windowed data segments. Specifically,
we estimate linear FM parameters of the WD of windowed
segments that are 512 samples long using the method in [11].
The simulation result is shown in Fig. 2 (b) for 9 dB SNR.
The WD suffers from cross terms when it is applied to mul-
tiple component signals. If two curves are close in the TF
plane, the WD IF estimation method can pick the cross term
location as the signal component; this is not the case with
the SMCMC. Note that to implement the WD estimation, the
number of signal components has to be known; only the max-
imum number of components is assumed known for the SM-
CMC. Also, the computational complexity and storage cost
are reduced dramatically by our approach. The new method
takes less than half of the CPU time and a quarter of the stor-
age cost when compared to the short-time WD approach.

5. CONCLUSION

In this paper, we proposed an approach for the IF estimation
of both single and multiple component signals with nonlin-
ear phase that may not exist in closed form. Our approach
approximates the IF of a signal by a linear combination of
the IFs of windowed FM waveforms with polynomial phase.
Although we have shown results comparing our method to
the short-time WD, we plan to consider adaptive windows in
the SMCMC (to improve performance in lower SNRs) and to
compare our method with the multi-taper reassignment in [4].
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